Suyeong Park - 지성을 추구하는 삶
/
[배우기]
/
데코수학/ 벡터미적분학
/
데코수학/ 벡터미적분학/ 다변수 벡터함수의 다이버전스, 커얼 – 2
Search
Duplicate
데코수학/ 벡터미적분학/ 다변수 벡터함수의 다이버전스, 커얼 – 2
(유튜브 동영상인데 현재는 삭제되어서 내용만 남김)
개념
•
다변수 벡터함수
F
⃗
(
x
⃗
)
\vec{F}(\vec{x})
F
(
x
)
에 대하여
◦
점
x
⃗
\vec{x}
x
에서 다이버전스:
∇
⃗
⋅
F
⃗
(
x
⃗
)
\vec{\nabla} \cdot \vec{F}(\vec{x})
∇
⋅
F
(
x
)
(
R
n
\mathbb{R}^{n}
R
n
에서 정의)
◦
점
x
⃗
\vec{x}
x
에서 커얼:
∇
⃗
×
F
⃗
(
x
⃗
)
\vec{\nabla} \times \vec{F}(\vec{x})
∇
×
F
(
x
)
(
R
3
\mathbb{R}^{3}
R
3
에서 정의)
다이버전스, 커얼식
•
∇
⋅
(
F
+
G
)
=
∇
⋅
F
+
∇
⋅
G
\nabla \cdot (F+G) = \nabla \cdot F + \nabla \cdot G
∇
⋅
(
F
+
G
)
=
∇
⋅
F
+
∇
⋅
G
•
∇
⋅
(
α
F
)
=
α
(
∇
⋅
F
)
\nabla \cdot (\alpha F) = \alpha (\nabla \cdot F)
∇
⋅
(
α
F
)
=
α
(
∇
⋅
F
)
(
α
\alpha
α
는 스칼라)
•
∇
⋅
(
f
F
)
=
f
(
∇
⋅
F
)
+
∇
f
⋅
F
\nabla \cdot (f F) = f (\nabla \cdot F) + \nabla f \cdot F
∇
⋅
(
f
F
)
=
f
(
∇
⋅
F
)
+
∇
f
⋅
F
(
f
f
f
는 다변수 실함수)
•
∇
×
(
F
+
G
)
=
∇
×
F
+
∇
×
G
\nabla \times (F+G) = \nabla \times F + \nabla \times G
∇
×
(
F
+
G
)
=
∇
×
F
+
∇
×
G
•
∇
×
(
α
F
)
=
α
(
∇
×
F
)
\nabla \times (\alpha F) = \alpha (\nabla \times F)
∇
×
(
α
F
)
=
α
(
∇
×
F
)
(
α
\alpha
α
는 스칼라)
•
∇
×
(
f
F
)
=
f
(
∇
×
F
)
+
∇
f
×
F
\nabla \times (f F) = f (\nabla \times F) + \nabla f \times F
∇
×
(
f
F
)
=
f
(
∇
×
F
)
+
∇
f
×
F
(
f
f
f
는 다변수 실함수)
•
∇
⋅
(
F
×
G
)
=
(
∇
×
F
)
⋅
G
−
F
⋅
(
∇
×
G
)
\nabla \cdot (F \times G) = (\nabla \times F) \cdot G - F \cdot (\nabla \times G)
∇
⋅
(
F
×
G
)
=
(
∇
×
F
)
⋅
G
−
F
⋅
(
∇
×
G
)
•
∇
×
(
F
×
G
)
=
(
∇
⋅
G
)
F
+
(
∇
F
⋅
G
)
−
F
⋅
∇
G
−
(
∇
⋅
F
)
G
\nabla \times (F \times G) = (\nabla \cdot G) F + (\nabla F \cdot G) - F \cdot \nabla G - (\nabla \cdot F) G
∇
×
(
F
×
G
)
=
(
∇
⋅
G
)
F
+
(
∇
F
⋅
G
)
−
F
⋅
∇
G
−
(
∇
⋅
F
)
G
•
∇
⋅
(
∇
×
F
)
=
0
\nabla \cdot (\nabla \times F) = 0
∇
⋅
(
∇
×
F
)
=
0
•
∇
×
(
∇
f
)
=
0
⃗
\nabla \times (\nabla f) = \vec{0}
∇
×
(
∇
f
)
=
0
•
(
∇
⋅
∇
)
f
=
∇
⋅
(
∇
f
)
(\nabla \cdot \nabla) f = \nabla \cdot (\nabla f)
(
∇
⋅
∇
)
f
=
∇
⋅
(
∇
f
)
(
f
f
f
의 라플라시안
∇
2
f
\nabla^{2} f
∇
2
f
)
•
(
∇
⋅
∇
)
F
⃗
=
∇
2
F
⃗
(\nabla \cdot \nabla) \vec{F} = \nabla^{2} \vec{F}
(
∇
⋅
∇
)
F
=
∇
2
F
(
F
F
F
의 라플라시안)
•
∇
×
(
∇
×
F
)
=
∇
⋅
(
∇
F
⃗
)
−
∇
2
F
⃗
\nabla \times (\nabla \times F) = \nabla \cdot (\nabla \vec{F}) - \nabla^{2} \vec{F}
∇
×
(
∇
×
F
)
=
∇
⋅
(
∇
F
)
−
∇
2
F